
有关数学说课稿初中汇总8篇
作为一名辛苦耕耘的教育工作者,通常需要用到说课稿来辅助教学,借助说课稿可以更好地组织教学活动。快来参考说课稿是怎么写的吧!以下是小编收集整理的数学说课稿初中8篇,仅供参考,大家一起来看看吧。
数学说课稿初中 篇1各位领导、老师大家好:
今天说课的题目是八年级(下册)第六章第一节《矩形》第一课时。下面我分设计理念与思路、教材分析、学生分析、教学目标、教学过程设计、板书设计等六个方面说一下这节课。
一、设计理念与思路:
新课标以培养学生的能力为目标,积极倡导他们亲身经历探究为主的学习活动,培养他们的好奇心和探究欲,发展他们对科学本质的理解,使他们学会探究解决问题的策略,为他们的终身学习和生活打好基础。在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。在课堂教学中,帮助学生检视和反思自我,唤起学生成长的渴望;帮助学生寻找、搜集和利用学习资源,设计恰当的学习活动;帮助学生发现他们所学东西的实际意义,营造和维持学习过程中积极的心理氛围;故此本课从生活中的数学(做窗框)入手,充分展示“观察、操作-猜想、探索-说理”的认识过程,使学生能在直观的基础上学习说理,体现直观与简单推理的融合基础知识的掌握与能力的形成。
二、教材分析:
本节课是平行四边形与特殊平行作业(矩形、菱形和正方形)之间第一课时,起到承上启下的作用,是本章内容的一个重点。同时,矩形又是人们日常生活中最常见的应用最广泛的一种几何图形,使学生体会到几何知识来源于实际又作用于实际的辨证关系。在研究几个图形之间的从属关系时也涉及了辨证思维和认识论的一些观点,这对于发展学生的逻辑思维能力和渗透辨证唯物主义观点的教育,都有一定的作用。
三、学生分析:
学生在小学学习过长方形的简单知识,有了这样的基础,再加上八年级学生思维活跃,兴趣广泛,获取信息渠道多,对新事物的追求与敏感,他们完全有能力通过自主探究的学习方式借助老师恰当的点拨,来学好矩形的性质。这就要求我们在课堂上要敢于放手,让学生去想,去说,去做,去表达,去自我评价,去体会成功的喜悦。面对问题,让学生大胆实践,使学生在实践中发现真知,从而体验到成功的喜悦,更加增强了学好数学的信心,促进学生形成积极乐观的态度和正确的人生观。
四、教学目标:
知识目标:1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.
2、会初步运用矩形的概念和性质来解决有关问题.
3、渗透运动联系、从量变到质变的观点.
能力目标:使学生能应用矩形定义、性质等知识,解决有关问题,进一步培养学生的逻辑推理能力。
情感目标:通过引入,使学生加深对矩形概念的理解,并以此激发学生的探索精神。
教学重点:矩形的性质。
教学难点:矩形的性质的灵活运用、学生的书写。
五、教学过程设计:
1、情境创设:让学生从生活中的数学引入(做窗框)入手,引导学生注重观察生活,从而进一步研究矩形的性质进入学习情境。
2、探索活动:活动一操作-观察-探索
活动分三个层次:第一层次:让学生了解做窗框的过程,即从中包含的数学知识,平行四边形的判定,两组对边分别相等的四边形是平行四边形。
第二层次:引导学生探索四边形ABCD的特点。学生通过进一步探究可以发现平行四边形ABCD中有一个角是直角,这样就为引入矩形的概念做好铺垫。
第三层次:概括得出矩形概念。在第二层次的基础上概括得出矩形概念,同时,要启发学生注意:矩形的概念有两方面的涵义,它既是矩形的一条性质,又是矩形的一种判定方法。
活动二探索矩形的性质
活动分四个层次:
第一层次:让学生举例说明生活中的矩形,使学生直观初步认识矩形,及矩形在生活中的广泛应用。
第二层次:让学生通过量课堂课本封面来了解矩形的性质,复习平行四边形的性质,并使学生理解矩形与平行四边形的特殊与一般的辨证关系,矩形具备一般平行四边形的性质,从而让学生叙述矩形具备的一般平行四边形的性质。
第三层次:引导学生思考,促使学生理解,由于矩形比一般平行四边形多一个特殊条件:有一个角是直角,因此矩形具有一些特殊性质,探索它的特殊性质要从它的特殊处有一个角是直角入手。引导学生观察:改变平行四边形形状,它的边、角、对角线有怎样的变化?当一个角为直角时,它的四个角有什么特点?两条对角线有怎样的特殊关系?这一层次旨在利用四边形的不稳定性,借助直观,引导学生通过合情推理去探索、发现结论。同时在演示的过程中,学生可以体会到知识发生的过程,渗透了量变到质变的辩证唯物主义观点的教育。
第四层次:在第三层次的基础上,引导学生对矩形的角、对角线的性质进行说理,同时发展学生有条理地表达能力。
3、例题讲解:
讲解课本例1。本例设计的目的直接应用矩形的有关性质;同时为总结矩形中具有的一些特殊图形(四个等腰三角形)做铺垫。也进一步培养学生的数学表达能力和书写能力。
4、课堂练习:例题讲解完毕后,通过问题链来归纳总结矩形的相关特点:由OA=OB=OC=OD可知图中有几个等腰三角形?这些三角形全等吗?面积相等吗?几个直角三角形?研究矩形的轴对称性。有关矩形的问题往往转化为直角三角形或等腰三角形的问题解决。
5、课堂小结:引导学生归纳总结,教师补充升华:矩形的性质
6、知识拓展
1、培养学生用多种方法解决实际和积极思考的习惯,同时为下一节课创设问题情境,(引入课中问题中另一种解决办法)
2、通过生活知识引导学生探究数学,应用数学,培养学生的学习数学的兴趣(门框窗框为什么要做成矩形的?)
7、布置作业:课本P134T1、2、3、4;作业本(2)P33
六、板书设计:
矩形的性质(一)、定义:(二)、矩形的性质(三)、例题
七、反思:
本节课的容量决定学生板书时间太少。
数学说课稿初中 篇2一、说教材分析:
1、教材的地位和作用
“平方根”是省编教材初中数学第三册第十章“实数”的第一节内容。由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是今后学习根式运算、方程、函数等知识的重要基础。
2、教学目标:(依据教材和大纲确定)
⑴、使学生理解平方根的概念,了解平方与开平方的关系。
⑵、学会平方根的表示法和求非负数的平方根。 ……此处隐藏11547个字……) 作为这节课的内容,还可以适当加强学生综合能力,特别是阅读图表、分析数据并计算的综全能力。小组为单位进行,看哪个小组算得又快、方法又巧。 利用表二计算,首先需要学生读懂这些数据的含义,其次能正确的使用小学里乘法的意义导出“加权平均数”计算方法,第三这样的数据的中位数的确定有一定的技巧,对学生的思维与分析要求教高。这是对学生的一次挑战,利于对学生“思想方法”与“意志品质”的提升。
(四)结束新课,布置作业。(5分钟) 学生交流心得。 老师相应补充:分析数据 切不可盲目片面,学会全面分析;确定中位数 :关键是将数据排序;确定众数 :作好频数统计。 完成作业本10.2.1。 学生交流心得。 老师相应补充:分析数据 切不可盲目片面,学会全面分析;确定中位数 :关键是将数据排序;确定众数 :作好频数统计。
数学说课稿初中 篇8今天我说课的课题是《勾股定理》。本课选自九年义务教育人教版八年级数学下册第十八章第一节的第一课时。
一、教学背景分析
1、教材分析
本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过20xx年国际数学家大会的会徽图案,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活中用途很大。勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。
2、学情分析
通过前面的学习,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过拼图来证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用直观教具、多媒体等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
3、教学目标:
根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:
知识与能力目标:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.
过程与方法目标:通过创设情境,导入新课,引导学生探索勾股定理,并应用它解决问题,运用了观察、演示、实验、操作等方法学习新知。
情感态度价值观目标:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。
4、教学重点、难点
通过分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。因此我确定本课的教学
重难点为探索和证明勾股定理.
二、教材处理
根据学生情况,为有效培养学生能力,在教学过程中,以创设问题情境为先导,运用直观教具、多媒体等手段,激发学生学习兴趣,调动学生学习积极性,并开展以探究活动为主的教学模式,边设疑,边讲解,边操作,边讨论,启发学生提出问题,分析问题,进而解决问题,以达到突出重点,攻破难点的目的。
三、教学策略
1、教法
“教必有法,而教无定法”,只有方法恰当,才会有效。根据本课内容特点和八年级学生思维活动特点,我采用了引导发现教学法,合作探究教学法,逐步渗透教学法和师生共研相结合的方法。
2、学法
“授人以鱼,不如授人以渔”,通过设计问题序列,引导学生主动探究新知,合作交流,体现学习的自主性,从不同层次发掘不同学生的不同能力,从而达到发展学生思维能力的目的,发掘学生的创新精神。
3、教学模式
根据新课标要求,要积极倡导自主、合作、探究的学习方式,我采用了创设情境——探究新知——反馈训练的教学模式,使学生获取知识,提高素质能力。
四、教学过程
(一)创设情境,引入新课
利用多媒体课件,给学生出示20xx年国际数学家大会的场面,通过观察会徽图案,提出问题:你见过这个图案吗?你听说过勾股定理吗?从现实生活中提出赵爽弦图,激发学生学习的热情和求知欲,同时为探索勾股定理提供背景材料,进而引出课题。
(二)引导学生,探究新知
1、初步感知定理:这一环节选择教材的图片,讲述毕达哥拉斯到朋友家做客时发现用砖铺成的地面,其中含有直角三角形三边的数量关系,创设感知情境,提出问题:现在也请你观察,看看有什么发现?教师配合演示,使问题更形象、具体。适当补充等腰直角三角形边长为1、2时,所形成的规律,使学生再次感知发现的规律。
2、提出猜想:在活动1的基础上,学生已发现一些规律,进一步通过活动2进行看一看,想一想,做一做,让学生感受不只是等腰直角三角形才具有这样的性质,使学生由浅到深,由特殊到一般的提出问题,启发学生得出猜想,直角三角形的两直角边的平方和等于斜边的平方。
3、证明猜想:是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.通过活动3,充分引导学生利用直观教具,进行拼图实验,在动手操作中放手让学生思考、讨论、合作、交流,探究解决问题的多种方法,鼓励创新,小组竞赛,引入竞争,教师参与讨论,与学生交流,获取信息,从而有针对性地引导学生进行证法的探究,使学生创造性地得出拼图的多种方法,并使学生在学习的过程中,感受到自我创造的快乐,从而分散了教学难点,发现了利用面积相等去证明勾股定理的方法。培养了学生的发散思维、一题多解和探究数学问题的能力。
4、总结定理:让学生自己总结定理,不完善之处由教师补充。在前面探究活动的基础上,学生很容易得出直角三角形的三边数量关系即勾股定理,培养了学生的语言表达能力和归纳概括能力。
(三)反馈训练,巩固新知
学生对所学的知识是否掌握了,达到了什么程度?为了检测学生对本课目标的达成情况和加强对学生能力的培养,设计一组有坡度的练习题:A组动脑筋,想一想,是本节基础知识的理解和直接应用;B组求阴影部分的面积,建立了新旧知识的联系,培养学生综合运用知识的能力。C组议一议,是一道实际应用题型,给学生施展才智的机会,让学生独立思考后,讨论交流得出解决问题的方法,增强了数学来源于实践,反过来又作用于实践的应用意识,达到了学以致用的目的。
(四)归纳小结,深化新知
本节课你有哪些收获?你最感兴趣的地方是什么?你想进一步研究的的问题是什么?通过小结,使学生进一步明确掌握教学目标,使知识成为体系。
(五)布置作业,拓展新知
让学生收集有关勾股定理的证明方法,下节课展示、交流.使本节知识得到拓展、延伸,培养了学生能力和思维的深刻性,让学生感受数学深厚的文化底蕴。
(六)板书设计,明确新知
本节课的板书设计分为三块:一块是拼图方法,一块是勾股定理;一块是例题解析。它突出了重点,层次清楚,便于学生掌握,为获得知识服务。